1 Midterm Re-exam v1

(1) **1**

MULTIPLE CHOICE marked out of 1.0 penalty 0 One answer only Shuffle

Which of the following statements about electric charge is correct?

- a. Protons and neutrons have the same charge magnitude.
- b. Electrons have a positive charge.
- c. Charge is quantized in units of 1.60 x 10 $^{-19}$ C. \checkmark
- d. Coulombs are a base SI unit of charge.

(2) **2**

MULTIPLE CHOICE marked out of 1.0 penalty 0 One answer only Shuffle

What is the electrostatic force between two charges of +2 C and -3 C separated by a distance of 2 meters?

- a. $1.35 \times 10^{10} \text{ N}$
- b. $2.7 \times 10^9 \text{ N} \checkmark$
- c. $8.99 \times 10^9 \text{ N}$
- d. $4.5 \times 10^{10} \text{ N}$

(3) **3**

MULTIPLE CHOICE marked out of 1.0 penalty 0 One answer only Shuffle

The electric field at a point due to a point charge is proportional to:

- a. The charge's magnitude and the distance squared.
- b. The inverse square of the distance only.
- c. The charge's magnitude and inversely proportional to the square of the distance. \checkmark
- d. None of the above.

(4) **4**

MULTIPLE CHOICE marked out of 1.0 penalty 0 One answer only Shuffle

A parallel plate capacitor has a plate area A and a separation d. Its capacitance is proportional to:

a. d^2/A

- b. $A/d \checkmark$
- c. d/A
- d. 1/A

(5) **5**

MULTIPLE CHOICE marked out of 1.0 penalty 0 One answer only Shuffle

Which statement about magnetic fields is true?

- a. Magnetic field lines begin at the north pole and end at the south pole.
- b. Magnetic forces act along the field lines.
- c. A charged particle at rest in a magnetic field experiences a force.
- d. The magnetic force on a particle depends on the angle between its velocity and the field. \checkmark

(6) **6**

marked out of 1.0 penalty 0 One answer only

What is the magnetic force on an electron moving with velocity v in a uniform magnetic field B, if v and B are parallel?

- a. Zero ✓
- b. $e \cdot v \cdot B$
- c. $e \cdot v \cdot B \cdot \sin(90^\circ)$
- d. $-e \cdot v \cdot B$

(7) 7

marked out of 1.0 Multiple choice penalty 0 One answer only Shuffle

The energy stored in a capacitor is given by:

- a. $\frac{1}{2}Q \cdot V$ b. $\frac{1}{2}C \cdot V^2$
- c. $Q^2/(2 \cdot C)$
- d. All of the above. \checkmark

(8) 8

marked out of 1.0 penalty 0 One answer only

For two parallel wires carrying current in the same direction, the force between the wires is:

- a. Attractive. ✓
- b. Repulsive.
- c. Zero.
- d. Proportional to the square of the currents.

(9) **9**

If an electron is moving in a circle due to a magnetic field, the radius of the circle is proportional to:

- a. Its velocity.
- b. The magnetic field strength. \checkmark
- c. The inverse of its velocity.
- d. Its charge.

(10) **10**

In a series circuit, the equivalent resistance is:

- a. The sum of the individual resistances. \checkmark
- b. The reciprocal of the sum of reciprocals of the individual resistances.
- c. Always less than the smallest resistance.
- d. Equal to the product of all resistances.

(11) **11**

Calculate the electric field 1 m away from a point charge of $5 \times 10^{-6}, C$.

•
$$4.495 \times 10^4$$
, $N/C \pm 1$ (0%)

(12) **12**

Two charges, $q_1 = 2 \times 10^{-6}$, C and $q_2 = -3 \times 10^{-6}$, C, are placed 4 m apart. Find the force between them.

•
$$3.375 \times 10^{-3}, N \pm 1 \checkmark$$

(13) **13**

NUMERICAL marked out of 1.0 penalty 0

A parallel plate capacitor with area $0.02, m^2$ and plate separation of 0.01, m is filled with a dielectric of constant $\kappa = 5$. Calculate its capacitance.

•
$$8.85 \times 10^{-11}, F \pm 1 \checkmark$$

(14) **14**

Numerical marked out of 1.0 penalty 0

A wire of resistance $R = 10, \Omega$ and length L = 2, m has a cross-sectional area $A = 0.001, m^2$. Determine the resistivity of the material.

•
$$5 \times 10^{-3}, \Omega \cdot m \checkmark$$

(15) **15**

Numerical marked out of 1.0 penalty 0

An electron travels at 2×10^6 , m/s perpendicular to a magnetic field of 0.1, T. Find the force acting on the electron.

•
$$3.2 \times 10^{-14}, N \pm 1 \checkmark$$

(16) **16**

Numerical marked out of 1.0 penalty 0

Determine the energy stored in a capacitor with $C=50\mu F$ and V=10,V.

•
$$2.5 \times 10^{-3}, J \pm 1 \checkmark$$

(17) **17**

Numerical marked out of 1.0 penalty 0

A solenoid has 1000 turns, a length of 0.5, m, and carries a current of 3, A. Calculate the magnetic field inside the solenoid.

•
$$7.54 \times 10^{-3}, T \pm 1 \checkmark$$

(18) **18**

NUMERICAL marked out of 1.0 penalty 0

Find the equivalent resistance of three resistors $R_1=2\Omega,\,R_2=3\Omega,$ and $R_3=6\Omega$ connected in parallel.

• $1\Omega \pm 1$ \checkmark

(19) **19**

Numerical marked out of 1.0 penalty 0

A circuit contains a 12, V battery and two resistors, 6Ω and 3Ω , connected in series. Determine the current in the circuit.

• $2, A \pm 1 \checkmark$

(20) **20**

Numerical marked out of 1.0 penalty 0

An alpha particle (q=2e) is moving with speed $5 \times 10^5, m/s$ in a magnetic field of 0.2, T. Calculate the radius of its circular path.

• $2.6 \times 10^{-2}, m \pm 1 \checkmark$

Total of marks: 20