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Field of a Magnetic Dipole

So far we have not talked about sources of magnetic fields, but even in our discussion of magnetic forces, we
have not made any mention of magnetic charges that behave in magnetic fields the same way that electric
charges behave in electric fields – with forces that act along the field lines, rather than perpendicular to
them. We don’t have the equivalent of Coulomb’s law for two magnetic point charges, for example. Let’s
explore this possibility here:

From our experience, we know that if we put two magnets together a certain way, they stick together,
and if we turn one of them around, they repel. So they clearly have a directionality to them. The closest
analogy in electricity is a dipole. Indeed, if we put two dipoles end-to-end one way, they will attract, and if
we turn one of them around, they will repel.

The attraction and repulsion occur because the there is a field created by one dipole that points in the
direction outward from the positive charge, and the field gets weaker with distance, so the other dipole
will feel a net force according to whichever of the two charges is closer to the dipole creating the field. In
magnetism, we call the end of the magnet from which emerges the outward-going field lines the north pole,
and the end into which the field lines converge the south pole. From the figures above, it’s clear that the
dipoles whenever like poles are brought together, and attract when opposite poles are brought together.
What’s even weirder is that every time we cut a magnet with two poles into two pieces, we just get two
more magnets with two poles.

If we examine the the field lines for a bar magnet closely and compare them to an electric dipole field,
we see how fundamentally-different the two fields are. For the electric dipole, the field changes direction
between the two poles, while for the magnetic case, the field lines continue straight through:

Outside the dipoles, the fields look the same, but they are clearly different, which we can characterize in
the following way: Magnetic field lines always form closed loops, while electric field lines begin
and end on electric charges.

Put another way, unlike electric fields which form their dipole fields from two monopoles, there don’t seem
to be any magnetic monopoles. Or at least we have never been able to detect a magnetic monopole, despite
many decades of experimental search for them. It turns out that electromagnetic theory doesn’t exclude the
possibility of the existence of these point charges of magnetism, but ultimately our theories have to agree
with what we observe in experiments, so at least for the moment (and for the duration of this class), we will
maintain the position that they simply don’t exist.
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Gauss’s Law for Magnetism

The revelation that our theory of magnetism doesn’t include individual magnetic charges has an immediate
consequence for the magnetic equivalent of Gauss’s law. With magnetic field lines always forming closed
loops, any field line that penetrates a Gaussian surface going in one direction (say going into the volume
bounded by the surface) must later emerge from that closed surface later in order to form the closed loop. If
there is a field line exiting a surface for every field line that enters it, then the net flux must necessarily
always be zero. Of course, from Gauss’s law, this means that there can never be any charge enclosed, and
this makes sense, given that there is no magnetic charge. Mathematically, we express this Gauss’s law for
magnetism in either integral or local form:∮ −→

B · d
−→
A = 0 ,

−→
∇ ·

−→
B = 0 (1)

Field of a Moving Point Charge

When we first started discussing magnetism, we noted a force between two current-carrying wires. From
there, we focused on the fact that a magnetic field affects only moving electric charges, but it should be
equally clear that the source of a magnetic field must also be moving electric charges. One might object that
we just said that magnetic fields don’t have point sources, so what difference does it make that we insist
that the point source be moving? We will see that this makes all the difference, because this leads to a field
that doesn’t point directly toward or away from that charge – the direction of the field is determined
by the direction of the velocity vector .

As different as the magnetic field is from the electric field, there are still so many striking similarities
that it is useful to describe the features of the magnetic field from a moving point charge in parallel with
the Coulomb electric field. This magnetic analog of the Coulomb field is called the law of Biot & Savart
(Biot-Savart law for short).

Feature Coulomb Biot-Savart

Field Source: |
−→
E | ∝ q (charge) |

−→
B | ∝ q|−→v | (moving charge)

Field Strength with Distance: |
−→
E | ∝ 1

r2
|
−→
B | ∝ 1

r2

Direction:
−→
E ∥ −→r

−→
B ∥ −→v ×−→r

Physical Constant:
−→
E =

(
1

4πϵo

)
q−→r
r3

−→
B =

(µo

4π

) q−→v ×−→r
r3

The physical constant that makes the units work out for the force is called the magnetic constant
(permeability of free space) which has values of µo = 4π × 10−7 T ·m

A .

While it is not obvious from the final form of the equation for the magnetic field, the resulting field is
a circle centered at the line passing through the charge along the direction of motion.

Rather than using the right-hand-rule for the cross-product v⃗× r⃗ (which gives the direction of the magnetic
field at a specific point in space), we can get a bigger-picture idea of the magnetic field lines by using a
different right-hand-rule: Point the thumb of the right hand in the direction of motion of the charge, and the
magnetic field direction everywhere in space forms closed circles around the line of motion in the direction
that the fingers curl as shown in the figure below.
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Field of a Current-Carrying Wire

It is far more common to have physical situations where a magnetic field is created by a current-carrying
wire than by a point charge. Fortunately, we already know how to convert from moving point charges to
current elements:

I
−→
dl ↔ dq −→v (2)

We therefore get this for a line of current from the law of Biot-Savart:

−→
B =

∫
d
−→
B =

∫ [(µo

4π

) I

r2
−→
dl × r̂

]
=

µo

4π

∫
I
−→
dl ×−→r
r3

(3)

Magnetic Field of a Long Straight Wire

One of the key differences between computing magnetic fields and electric fields is that while we were able
to use symmetry to help us solve for components of the electric field, in the case of the magnetic field, this
is much harder to do, and is much safer to just get all the vectors right and trust vector math thereafter.

We start by expressing all the relevant quantities in terms of our chosen coordinate system:

−→
dl = dy ĵ r̂ = cos θ î− sin θ ĵ cos θ =

R√
y2 +R2

Next, write down Biot-Savart’s law for the current element, and simplify:

d
−→
B =

(µo

4π

) I

r2
−→
dl × r̂ (4)

=

(
µoI

4π

)
dy

y2 +R2
ĵ ×

(
cos θ î− sin θ ĵ

)
(5)

=

(
µoI

4π

)
dy

y2 +R2

(
cos θ (−k̂)− 0

)
(6)

=

(
µoI

4π

)
dy

y2 +R2

(
R√

y2 +R2

)(
−k̂
)

(7)

=

(
µoI R

4π

)
dy

(y2 +R2)
3
2

(
−k̂
)

(8)
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All that remains is to add up the contributions to the field from all the current elements, which means
integrating this from y = −∞ to y = ∞

−→
B =

(
−k̂
)(µoI R

4π

) +∞∫
−∞

dy

(y2 +R2)
3
2

(9)

=
(
−k̂
)(µoI R

4π

)[
1

R2

y√
y2 +R2

]+∞

−∞

(10)

=
(
−k̂
)( µoI

4πR

)
[2] (11)

=

(
µoI

2πR

)(
−k̂
)

(12)

As with the electric field, the magnetic field obeys superposition, which means we can combine the result
of this physical situation with others to get a net magnetic field. It is also worth noting that both the
moving point charge and the long, straight wire yield magnetic fields whose line close back on themselves
(form closed loops) – in nether case does a field emanate out of or into the source. There are no magnetic
monopole fields.

Field of a Loop

Another useful field to know is that which points along the axis of a circular loop of current. The method
is essentially the same as above, but the coordinate system used is different, which leads to a little bit more
complicated vector manipulation.

Again start by expressing quantities in terms of the coordinates we have set up. We can again write
everything in terms of the basis vectors. First we have the magnitude of the segment of wire:∣∣∣−→dl ∣∣∣ = R dϕ (13)

Next we note that tail-to-head vector addition gives:

−→
R +−→r = zk̂ ⇒ −→r = −

−→
R + zk̂ (14)

Before we can integrate using the Biot-Savart law, we have to resolve the vector products. Looking at the

diagram, we can see that the current element
−→
dl , the position vector of the current element R⃗, and the unit

vector k̂ are all mutually orthogonal, making d⃗l × R⃗ parallel to k̂, and d⃗l × k̂ parallel to R⃗. This allows us
to use the right-hand rule to complete these products

−→
dl ×−→r =

−→
dl ×

(
−
−→
R + zk̂

)
= R dl k̂ + z dl R̂ (15)

By Aaron G.K. Page 4 of 7



Notes on Magnetic Fields Page 5 of 7

Putting this result into the integral and noting that magnitudes of the vectors r⃗ and zk̂ are constant in the
integral, and satisfy r2 = R2 + z2, we get:

−→
B =

µoI

4π

∫ −→
dl ×−→r

r3
=

µoI

4π (R2 + z2)
3
2

∫ [
R dl k̂ + z dl R̂

]
(16)

While the magnitude of R⃗ doesn’t change over the integral, its direction does change, so we have to write
the unit vector R̂ in terms of the coordinates to do the integral of the second term. Let’s do each integral
separately. The first is straightforward, since the integral of just dl is simply the circumference of the circle:

µoIR

4π (R2 + z2)
3
2

k̂

∫
dl =

µoIR
2

2 (R2 + z2)
3
2

k̂ (17)

µoIz

4π (R2 + z2)
3
2

∫
dlR̂ =

µoIz

4π (R2 + z2)
3
2

2π∫
0

R dϕ
(
cosϕ î+ sinϕ ĵ

)
= 0 (18)

The second integral just ends up vanishing, giving the result for a magnetic field along the axis of a loop of
radius R a distance z from the plane of the loop:

B =
µoIR

2

2 (R2 + z2)
3
2

(19)

If we are only interested in the field at the center of the loop, we plug in z = 0 to get the simple result:

B =
µoI

2R
(20)

Field of a Solenoid

It is possible to stack lots of individual dipoles on top of each other to create a long tube called a solenoid.
Such a device consists of a number of turns in the coil N , and a length L, resulting in what will be the
critical measure, the turn density:

To compute the field,like the loop, we will only look on the axis. But we will also simplify it further by
assuming we are looking at a point on the axis inside the solenoid far from the ends (so essentially it has an
infinite length, though the turn density is of course finite).

We treat this as a collection of an infinite number of loops. If we pick an origin (which we can place
anywhere along the infinite axis), then we have the field at that point by a loop at a position z on the axis
is given by equation 19 above. Then we need to add up the field contributions at the origin due to all of
the loops. The problem is, there is not a loop at every point along the z-axis. With a turn density of n, the
number of turns in a tiny slice dz would be ndz. The total current in that slice would then be this number
multiplied by the current through the wound wire (I):

current in a dz slice located at z = I n dz (21)

Plugging this into Equation 19 for the current, gives the tiny contribution to the field by the slice, and
adding them all up gives the field. We are not given the radius of the solenoid, but we will call it R (which
turns out to be useless):

B =

+∞∫
−∞

µo (n I dz)R2

2 (R2 + z2)
3
2

=
µo n I R2

2

+∞∫
−∞

dz

(R2 + z2)
3
2

=
µo n I R2

2

[
z

R2
√
R2 + z2

]+∞

−∞
= µo n I (22)

There are a few particularly interesting aspects of the fields of solenoids:
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(i) The field within the solenoid doesn’t change much (it is pretty much uniform). This basically comes
from the fact – as we found here – that the field on the axis doesn’t depend upon the radius of the
solenoid.

(ii) The field just outside the solenoid (on its side, not the end) is very weak (basically it is zero).

(iii) The field looks just like that of a bar magnet, but it can be turned on and off by switching the current
on or off.

Ampére’s Law

A Magnetic Analog to Gauss’s Law for Electricity

We have already stated that Gauss’s law for magnetic field is trivial, as there are no magnetic monopoles,
but it turns out that there is a separate mathematical law that works for magnetic sources in the same
way that Gauss’s law works for electric sources. It incorporates ”enclosed” sources, and allows us to use
symmetrical situations to solve for fields using methods simpler than integrating Biot-Savart’s law.

This magnetic version of the electrical Gauss’s law is called Ampére’s law, and since it can’t involve
enclosed point sources, it instead deals with lines of current, which either circle back on themselves to form
a closed circuit, or are infinitely-long (and circle-back on themselves at infinity). But how do we ”enclose”
a line of current? In the case of charge, it was enclosed if there was no way to remove the charge from
the Gaussian surface without breaking through the surface (i.e. the surface has no holes in it). In the case
of Ampére’s law, we consider a current to be enclosed by an imaginary closed path – called an Ampérian
circuit – rather than a surface. Such a current is enclosed when there is no way to move the line of current
out without it breaking through the Ampérian circuit.

There are two ways that a current won’t be enclosed: If there is a break in the path around the
wire, so that the wire can slide through it, or is the segment of wire is finite in length and does
not form a closed loop. If the loop of wire is closed, then the Ampérian circuit is ”linked” with it, and
the current is enclosed. If the wire is infinitely long, the wire similarly cannot escape the Ampérian circuit
without breaking through it, so its current is also enclosed. [Mathematically, we generally define a current
to be ”enclosed” by a closed path if it pierces every possible surface that is bounded by the closed path.
Clearly there are stretched surfaces we can construct with the closed path as it border that do not allow a
finite-length segment to pierce it.] ∮

path

−→
B ·

−→
dl = µoIenclosed (23)
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The integral is performed along any Ampérian circuit that goes completely around the enclosed current, in
the same way that the integral for Gauss’s law works for any closed surface that encloses the charge. All of
the properties of Gauss’s law have analogous properties for Ampére’s law:

(i) Enclosed is defined in terms of ability to remove charge/current from surface/closed path without
breaking through the enclosure.

(ii) The sign of the charge inside a Gaussian surface is related to the positive direction of the area vector.
If the total flux is in the negative direction (opposite to the area orientation), then the enclosed charge
is negative. Similarly, we define a positive direction of circulation for an Ampérian circuit, and if
the direction of the magnetic field of the current has the same circulation orientation as that of the
Ampérian circuit, then that current is ”positive,” otherwise it is ”negative.”

(iii) There can be both positive and negative charges/currents enclosed in a surface/closed path, and these
are combined to give a net charge/current.

(iv) We can use symmetry to solve for a field. This usually means that the field is either parallel or
perpendicular to the surface/closed path, and that it has a constant magnitude on that surface/closed
path.

(v) The shape of the surface/closed path is not relevant, as long as it is closed.

Applications of Ampere’s Law

You can read how Ampere’s law is applied in various current distributions at the following link:
https://physics.kebede.org/assets/notes/magnetism/field/ampere/applications.pdf
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