St John Baptist De La Salle Catholic School, Addis Ababa Physics ESSLCE Study Guide

December 25, 2024

Forces on Moving Charged Particles

If we run curr

Physics Teaching Plan (January to May)

—p1.2cm—p1cm—p4.5cm—p4.5cm—p4.5cm—p3cm—p3cm— Month Week Topics Learning Goals Activities & Teaching Methods Assessments Remarks

Month Week Topics Learning Goals Activities & Teaching Methods Assessments Remarks

January 1-2 - Vectors: Representation, addition, and subtraction.

- Motion in one dimension: Uniform and accelerated motion. Understand vector operations.
- Analyze motion graphs and equations. Vector addition using diagrams.
- Graphical analysis of motion problems.
- Interactive Q&A sessions. Quiz on vector operations.
- Motion worksheet. Review foundational concepts in mechanics.

January 3-4 - Newton's Laws: Applications and implications.

- Frictional forces.
- Conservation of momentum. Apply Newton's laws to solve problems.
- Explain friction and momentum conservation. Problem-solving sessions.
- Demonstrations (e.g., collision experiments). Problem-solving assessment on forces and motion. Set groundwork for complex mechanics.

February 5-6 - Work, energy, and power: Theorem, conservation, mechanical power. - Relate work and energy concepts.

- Calculate power in physical systems. Energy conservation experiments.
- Group discussions on energy systems. Calculation problems on work and energy. Focus on energy transformations.

February 7-8 - Fluid mechanics: Pressure, Archimedes' principle, fluid flow dynamics. - Describe fluid behavior under various conditions.

- Explain buoyancy and flow principles. Lab experiments on buoyancy.
- Solving real-life problems (e.g., dam pressure). Fluid mechanics worksheet. Use real-world applications to engage students.

March 9-10 - Thermodynamics: Temperature, heat transfer, calorimetry, changes of state. - Understand heat transfer mechanisms.

ESSLCE Plan Page 2 of 6

- Solve problems involving thermal properties. Conduct calorimetry experiments.
- Discuss heat in everyday applications. Quiz on thermodynamics concepts. Relate to familiar contexts for better grasp.

March 11-12 - Wave motion: Properties, propagation.

- Sound waves: Interference, applications. Explain wave behavior and sound phenomena.
- Analyze wave interference and sound applications. Demonstrations with tuning forks.
- Solve wave problems collaboratively. Wave mechanics practice test. Reinforce with visual and auditory tools.

April 13-14 - Electrostatics: Charge, electric fields, potential.

- Circuits: Ohm's Law, resistor combinations. Analyze electric forces and fields.
- Apply Ohm's Law to circuit design. Build circuits in lab.
- Problem-solving with circuit diagrams. Lab-based assessment on circuits. Encourage hands-on exploration of concepts.

April 15-16 - Magnetism: Fields, electromagnetic induction.

- Electronics: Semiconductors, transistors. Understand magnetic interactions.
- Explain basic electronic components. Demonstrations of electromagnetic induction.
- Simple electronic circuit construction. Test on magnetism and basic electronics. Bridge physics with real-world tech applications.

May 17-18 - Comprehensive review of all topics. - Reinforce understanding of all topics.

- Identify and address weak areas. Summarize key concepts.
- Interactive review sessions.
- Group Q&A for clarifications. Diagnostic quiz covering all topics. Emphasize review and confidence-building.

May 19-20 - Practice exams and strategy. - Apply knowledge to timed exams.

- Develop effective exam strategies. Conduct mock exams under exam conditions.
- Detailed feedback sessions on answers. Mock exam results and feedback. Prepare students for the real exam environment.

By Aaron G.K. Page 2 of 6